Chapitre 36. La dilatation des solides

Les dimensions d'un corps solide augmentent lorsque sa température élève, c'est le phénomène de la dilatation. À l'opposé, ses dimensions diminuent lorsque la température s'abaisse et on parle de contraction.

Si le corps est de forme allongée, comme une tige, on mesure son allongement de longueur \(f \) à une extrémité et on mesure aussi sa variation de longueur de l'autre extrémité. Le facteur de dilatation et contraction est défini par

\[
\alpha = \frac{f}{f_0} \quad \text{ou} \quad \frac{f - f_0}{f_0}
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\alpha = \frac{f}{f_0} \Delta T
\]

Les matériaux de construction et d'aluissent le matériau overwhelm the tige qui s'appelle coefficient de dilatation linéaire. Son unité est le \({\text{mm}}/{\text{mm}} \) ou le \({\text{C}}/{^\circ}{\text{C}} \) (si les températures sont en \(^\circ\text{C} \)). La valeur de \(\alpha \) est indépendante du choix de l'une ou l'autre de ces deux unités.

La longueur \(f_0 \) et l'allongement \(f \) se représentent dans les mêmes unités. L'unité de longueur utilisée dans le système international est le \(\text{m} \).

Remarques

- Si une tige s'allonge d'un millimètre de sa longueur pour une augmentation de température de un degré centigrade (ou Kelvin), le coefficient de dilatation du matériau qui la constitue vaut un millimètre par degré.

- Si \(f_0 = f \), les valeurs de \(\Delta f \) et \(\Delta T \) sont négatives. Il s'agit d'une contraction.

- Dans tous les cas la longueur finale \(f \) de la tige est donnée par

\[
f = f_0 + \Delta f = f_0 + \alpha f_0 (T - T_0)
\]

ou

\[
f = f_0 (1 + \alpha \Delta T)
\]

La dilatation et contraction

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 T
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]

et dépend du matériau qui la constitue.

Les propriétés d'un matériau sont données par la formule

\[
\Delta f = \alpha f_0 \Delta T
\]

ou

\[
\Delta f = \alpha f_0 (T - T_0)
\]

La dilatation est proportionnelle à la variation de température

\[
\Delta T = T - T_0
\]
5 La variation de volume

La variation de volume ΔV d’un corps solide sous l’effet d’une variation de température ΔT est

- proportionnelle à son volume initial V_0 ;
- proportionnelle à sa variation de température ΔT;
- dépend du matériau qui constitue ce solide.

$\Delta V = \gamma \cdot V_0 \cdot \Delta T$

Le coefficient de dilatation γ (ou coefficient de dilatation volumique) est appelé coefficient de dilatation volumique.

Sa valeur varie approximativement le triple de celle du

$\gamma \approx 3 \times 10^{-5}$

et son unité est le (${\text{C}^\circ}$) sur le (${\text{K}^\circ}$) valant le choix de l'échelle de température. Le volume et sa variation sont en (${\text{m}^3}$) dans le système international.

Le volume final V_f du corps est donné par:

$$V_f = V_0 + \gamma \cdot V_0 \cdot \Delta T = V_0 \cdot (1 + \gamma \cdot \Delta T)$$

6 Contenance des récipients

Dilatation d'une sphère de plomb.

8 Lien entre dilatation linéaire et dilatation volumique

Considérons un cube d’arête a (figure ci-contre). Son volume initial V_i est a^3.

Sous l’effet d’un changement de température ΔT, chaque arête devient $a_f = a + \Delta a$.

Le volume final V_f est $V_f = a_f^3 = (a + \Delta a)^3 = a^3 + 3a^2\Delta a + 3a\Delta a^2 + \Delta a^3$.

Prenons l'exemple d'un cube de fer d'arête $a = 1\text{ cm}$ subissant une augmentation de température $\Delta T = 1000\text{°C}$.

Calculons la valeur numérique de chaque terme de l'expression ci-dessus. Pour mieux les comparer nous exprimons les résultats en (${\text{cm}^3}$).

$a = 12 \times 10^{-4} \text{ cm}$

$\Delta a = 1.2 \times 10^{-5} \text{ cm}$

$\triangle a^3 = 4.32 \times 10^{-19} \text{ cm}^3$

$\Delta a^3 = 0.001 \text{ cm}^3$

Les deux derniers termes de l'expression calculée est une valeur negligible comparée aux autres. On peut donc négliger ce terme quand la variation est petite.

Il reste:

$V_f = V_i + a^3 + 3a^2\Delta a + 3a\Delta a^2$

%frite aux sources ainsi la relation

$\Delta V = V_f - V_i = a^3 + 3a^2\Delta a + 3a\Delta a^2 - a^3 = 3a^2\Delta a + 3a\Delta a^2$

L'opération qui consiste à enlever d'une expression les termes dont la valeur numérique est négligeable est une approximation.

7 Masse et volume

Quelle que soit l'expérience réalisée, on peut vérifier que la masse de l'objet dilaté (ou contracté) ne change pas. Car même son volume change, la masse volumique d'une substance est une constante avec la température.

Les tables numériques font mention de la température de référence T_0 à laquelle correspondent les valeurs des masses volumiques ρ_0. On peut ainsi trouver la valeur de la masse volumique à n'importe quelle température T.

Considérons un corps fait d'une substance donnée de masse m et de volume V_0 à la température T_0. La masse volumique à cette température vaut

$$\rho = \frac{m}{V}$$

A la température T, le volume du corps est

$$V = V_0 \cdot (1 + \gamma \cdot \Delta T)$$

et la masse volumique s'obtient par:

$$\rho_T = \frac{m}{V} = \frac{m}{V_0 (1 + \gamma \cdot \Delta T)} = \frac{\rho_0}{1 + \gamma \cdot \Delta T}$$

1 Voici un texte sur l'expérience d'un laboratoire d'expérimentation sur la dilatation et la contraction.

2 Les résultats obtenus montrent que la dilatation est plus importante que la contraction.

3 Qu'en est-il des métaux dans des conditions de température extrême?

4 On constate que les métaux sont plus sensibles à la température.

5 La dilatation pour les métaux est plus importante que pour les non-métaux.

6 Faire un schéma explicant le fonctionnement de la balance électronique pour déterminer la force gravitationnelle.

7 Le diagramme de la température de la sonde d'un appareil de mesure en laboratoire est nécessaire pour l'utilisation et le maintien de l'équipement.

8 Le cheminement de la sonde est assuré dans les chaînes électroniques.

9 L'insertion d'une sonde d'électrode est essentielle pour une mesure précise de la température.
Corrigé des exercices

La dilatation des solides

Exercice 1

Toutes les dimensions d'un objet solide augmentent dans les mêmes proportions lorsque sa température s'élève. Il se contracte. Chaque matière a un coefficient de dilatation qui lui est propre. Toutes les dimensions d'un objet solide diminuent dans les mêmes proportions lorsque sa température baisse. Il se contracte. Un bilan est constitué de deux lames de matière fixées l'une à l'autre sur toute leur longueur et dont le coefficient de dilatation est différent (l'une se dilate plus que l'autre pour un même écart de température). Cette différence se traduit par une courbure du bilan lorsque la température varies. Un thermomètre est un dispositif qui permet de mesurer la température d'un objet au-dessus (four de cuisson) ou au-dessous (organes) d'une température choisie. Toutes les dimensions d'un objet solide y compris celles des cavités ou creux, augmentent dans les mêmes proportions lorsque sa température s'élève.

La dilatation des liquides

Exercice 2

Les récipients gradués se dilatent et se contractent avec les variations de température. Pour que leur capacité varie, il faut réfléchir à la gradientation. Il faut utiliser la température indiquée. Les liquides ayant une dilatation environ vingt fois plus importante que les solides, les différences de température ont une importance plus grande qu'on ne pourrait le déduire en calculant la variation de volume du récipient solide.

La dilatation des gaz

Exercice 3

La barre qui se dilate est appliquée sur le cylindre solidaire de l'aiguille et le fait tourner. Le système est beaucoup plus sensible que le rayon du cylindre sera petit et que l'aiguille sera longue. Les forces de dilatation sont très grandes. Si on fixe la barre aux deux extrémités, soit elle casse le système de fixation, soit elle se pèle.

17 Les balanciers d'herbage

Dans les hôtels mécaniques, on utilise un échelle qui est réglé de manière à ce que le nombre des tours augmente à mesure que l'herbe s'allonge. Pour comprendre le principe de ce régulateur, il suffit de se rappeler que le tour de l'herbe est en rapport avec le nombre de tours de l'aiguille. Le régulateur peut être considéré comme un système de mélange avec lequel l'herbe s'allonge.

Ce schéma montre comment les balanciers d'herbage se régulent.

La longueur d'herbe est ajustée en fonction de la température.
La masse de l'herbe est mise en relation avec le niveau de la balance.
Grâce à cette construction, le tonnerre suivant l'ordre du colonel de la guerre de l'eau (23°C) peut être maitrisé. La mise en œuvre se fait par le mécanisme de l'alimentation du bateau.

18 Le serrage de pièces mécaniques

C'est un principe de serrage à vis qui est utilisé dans les constructions. L'idée est que le tour de l'herbe augmente à mesure que l'herbe s'allonge. Le régulateur peut être considéré comme un système de mélange avec lequel l'herbe s'allonge.

Ce schéma montre comment les balanciers d'herbage se régulent.

Le tour de l'herbe est ajusté en fonction de la température.
La masse de l'herbe est mise en relation avec le niveau de la balance.
Grâce à cette construction, le tonnerre suivant l'ordre du colonel de la guerre de l'eau (23°C) peut être maitrisé. La mise en œuvre se fait par le mécanisme de l'alimentation du bateau.

Les joints de dilatation sur les bioéthanol (voir les points et autres constructions de biogaz) sont destinés à permettre aux éléments de la construction de se dilater sans se fendre au fur et à mesure de la dilatation et d'autres parties de la construction.

Exercice 4

Il n'y a pas de corrigé pour cet exercice.

Exercice 5

Il n'y a pas de corrigé pour cet exercice.

Exercice 6

Sur le schéma de la deuxième figure, le courant électrique peut passer puisque les parties rouge et noire sont en contact. Lorsqu'on branche cette aiguille, elle va s'aligner, et le courant électrique va se propager et former un courant collecteur dans la banque. La faible tension s'étend. En se repositionnant, le bilan reprend sa forme de départ, rétablissant le contact électrique et le cycle commence.

La plupart des thermomètres fonctionnent sur le même principe. Selon le même schéma d'utilisation, le bilan interrompt le circuit électrique soit quand la température augmente, soit quand elle diminue.

Exercice 7

Voir l'exercice n° 6 de la même série.

Exercice 8

Il n'y a pas de corrigé pour cet exercice.

Pour le principe de fonctionnement, voir l'exercice n° 6 de la même série.

Exercice 9

L'amplitude de mouvement d'un bilan dépend de la différence entre les coefficients de dilatation des deux pièces qui la constituent. L'intensité de la dilatation dépend de la différence entre les coefficients de dilatation des deux pièces qui la constituent. L'intensité de la dilatation peut être modifiée par des méthodes d'alimentation pour augmenter la masse d'herbe.

Exercice 10

Il n'y a pas de corrigé pour cet exercice.

Exercice 11

Le séchage à chaud consiste à placer le rivet après l'avoir fortement chauffé (plusieurs centaines de degrés). En se refroidissant, il se contracte et se raccroche très fort les plaques qu'il doit assembler.
Chapitre 37. La dilatation des liquides

Comme les solides, les liquides se dilatent ou se contractent sous l'effet d'un changement de température. Dans le circuit d'eau de chauffage d'un immeuble, il est nécessaire de prévoir un robinet d'expansion permettant à l'eau de se dilater. Le dilatateur de liquide est l'implantation la plus courante de la dilatation des liquides.

1 Expériences

On prend des ballons de couleur différentes et renfermant de l'alcool. On mesure les volumes d'alcool à la température ambiante. On les chauffe simultanément à la même température et on mesure leurs volumes finaux à la nouvelle température. On estime que l'augmentation du volume d'alcool est proportionnelle au volume initial.

En observant un seul des ballons de l'expérience précédente, on mesure le volume d'alcool pour différentes températures. On observe que la variation du volume d'alcool est proportionnelle à la variation de température.

Ces résultats font apparaître que la dilatation volumique et la dilatation linéaire sont liées. La dilatation volumique est donnée par:

$$\Delta V = V_f - V_i = V_i \gamma \Delta T$$

$$\gamma$$ (gamma) est le coefficient de dilatation volumique du liquide. On trouve dans les tables numériques la valeur de $$\gamma$$ pour les différents liquides. Elle est exprimée en °C⁻¹ ou en K⁻¹. Il dépend du choix de l'unité de température.

La valeur de $$\gamma$$ dépend de la température, mais on peut la considérer comme constante. Ce n'est manifestement pas le cas de l'eau, dont le coefficient de dilatation varie fortement avec la température.

Le volume final du liquide, après dilatation, est donné par:

$$V_f = V_i + \Delta V = V_i (1 + \gamma \Delta T)$$

2 Le coefficient de dilatation volumique

Un liquide n'ayant pas de forme propre, on ne considère que sa dilatation volumique.

Les expériences précédentes montrent que, comme pour les solides, la variation $$\Delta V$$ de volume:

- est proportionnelle au volume initial $$V_i$$
- est proportionnelle à la variation de température $$\Delta T$$
- dépend de la nature du liquide,

Un liquide dilate et se contracte suivant les variations de température. Les liquides se dilatent plus que les solides. On peut aussi en tirer des conclusions en comparant les valeurs des coefficients de dilatation volumique des solides et des liquides.
4 Masse et volume

Quelle que soit l'expérience réalisée, on peut vérifier que la masse du liquide dilué (ou concentré) ne change pas. C'est pour ce solde, la masse volumique d'un liquide varie avec la température.

5 Le cas de l'eau

Habituellement, un liquide se dilate lorsque sa température augmente. Ce n'est pas le cas de l'eau qui se contracte lorsque sa température descend de 0°C à 4°C. Elle se dilate de nouveau lorsque sa température dépasse 4°C.

Le volume occupé par une masse d'eau donnée est donc minimal à 4°C et par conséquent la masse volumique de l'eau est maximale à 4°C.

6 Le thermomètre enregistreur

Dans les combats où il est important de contrôler les variations de températures, (chambres froides, unités, caves, etc.), on utilise des thermomètres enregistreurs. Plus particulièrement en météorologie, le thermomètre enregistreur, appelé à la longue enregistrement, et un baromètre, est utilisé pour prévoir l'évolution du temps.

Les mesures passent par un bâton. Les autres utilisent externement un réservoir rempli d'alcool. L'enregistrement se fait sur un cylindre.

Dans le modèle à alcool, le réservoir, en forme de coquille, est rempli d'alcool. Lorsque la température augmente, le liquide se dilate et déforme les poignées du réservoir. La déformation, amplifiée par un levier, est mesurée à un stylet encreur. Le cylindre, encastré par un mouvement d'horlogerie, fait généralement un tour en une journée.

Corrigé des exercices

14 Une installation moderne de chauffage central

Dans une installation de chauffage, l'eau peut circuler par simple connexion. Elle est en circulation constante. Elle est de la même température sur toute la longueur des conduites. L'eau qui revient de la chaudière est chaude et l'eau qui est envoyée à la chaudière est froide. L'eau chaude qui circule dans les conduites est utilisée pour chauffer les pièces de la maison. L'eau froide qui circule dans les conduites est utilisée pour refroidir les pièces de la maison.

Exercice 1

La dilution des liquides

- Chaque liquide a un coefficient de dilution qui lui est propre.
- Une dilution générale, les liquides se diluent en 20 fois plus que les solides.
- Il existe plusieurs types de thermomètres qui n'ont pas de partie liquide (thermomètres, brouettes...).
- Le résultat consommé dans les phénomènes physiques, il ne varie pas.

Exercice 2

La dilution d'une liquide, comme celle d'un solide, dépend de la température et de la nature du liquide.

Exercice 3

Il existe des thermomètres et des thermostats qui utilisent la dilatation d'un liquide (voir Exercice 5).

Exercice 4

La formule du récipient n'a pas d'influence sur la dilatation de liquide qu'il contient.

Exercice 5

La sonde est un réservoir de liquide. Lorsque la température baisse, le volume du liquide diminue et la membrane s'ouvre (dilatation). Lorsque la température monte, la membrane se ferme. Lorsque la température est à son point de congélation, la membrane se ferme. Lorsque la température est à son point de fusion, la membrane s'ouvre. Lorsque la température est à son point de fumée, la membrane se ferme. Lorsque la température est à son point de cristallisation, la membrane s'ouvre.

Exercice 6

Verser de l'eau chaude dans une bouteille. Fermer la bouteille et la poser sur une balance précise. Relâcher le petit sans ouvrir la bouteille lorsqu'elle sera refroidie.
Chapitre 38. Les gaz parfaits

En été, après exposition au Soleil, on constate qu’un matelas pneumatique relativement peu gonflé devient plus dur : la pression de l’air contenu a augmenté. Il grossit également, le volume d’air contenu a augmenté. En général, lorsque l’on élève la température d’un gaz, ses volume et sa pression augmentent. Si la pression reste constante, seul le volume augmenté.

1. La dilatation d’un gaz

Un volume \(V_1 \) d’air à la température ambiante \(T_1 \) est enfermé dans une seringue bouchée. On la plonge dans un récipient contenant de l’eau chaude à la température \(T_2 \). Le plongeur se souvient que le volume d’air emprisonné augmente sous l’effet de la dilatation de température.

Quand on chauffe un gaz à pression constante, son volume augmente.

On mesure le nouveau volume \(V_2 \) : l’expérience est répétée avec différents volumes d’air dans la seringue (pour un même écart de température). On constate que l’augmentation de volume \(\Delta V \) est proportionnelle au volume initial \(V_1 \).

On prend un volume d’air dérivé dans la seringue et on l’immerge successivement dans des bains énonnés de l’eau à différentes températures. On constate que l’augmentation de volume \(\Delta V \) est proportionnelle à l’augmentation de température \(\Delta T \).

L’augmentation de volume d’un gaz est donnée par

\[
\Delta V = \gamma \cdot V_1 \cdot \Delta T
\]

Comme dans le cas des liquides, \(\gamma \) est le coefficient de dilatation volumique du gaz. Sa unité est le \(^{\circ} \text{C}^{-1} \) ou le \(\text{K}^{-1} \) dans le choix de l’unité de température.

Le volume \(V_2 \) s’obtient à partir du volume \(V_1 \) par

\[
V_2 = V_1 + \gamma \cdot V_1 \cdot \Delta T
\]

2. La dilatation d’un gaz ne dépend pas de sa nature

Contraires aux liquides et aux solides, les gaz se dilatent presque tous de la même façon.

Pour les gaz,

\[
\frac{T_2}{T_1} = \frac{V_2}{V_1}
\]

si les températures sont en \(\text{°C} \);

\[
\frac{T_2}{T_1} = \left(\frac{V_2}{V_1} \right)^{\gamma}
\]

si les températures sont en \(\text{K} \).

Placés dans les mêmes conditions, un liquide se dilate plus qu’un solide, un gaz se dilate encore davantage.

3. La loi de Gay-Lussac

On répète les résultats des expériences du paragraphe 1 où l’on exprime les températures en degrés Celsius.

On dispose de:

- \(T_1 \) la température initiale de l’air contenu dans la seringue en \(\text{°C} \) (température ambiante);
- \(T_2 \) la température finale de l’air contenu dans la seringue en \(\text{°C} \) (température de l’eau chaude);
- \(V_1 \) le volume d’air à l’origine immédiatement après la seringue dans le bain à la température de l’eau chaude;
- \(V_2 \) le volume d’air après immersion de la seringue dans le bain à la température de l’eau chaude.

On constate que:

\[
\frac{V_1}{V_2} = \frac{T_1}{T_2}
\]

Lors de la dilatation d’un gaz à pression constante, son volume et sa température absolue sont proportionnels.

\[
\frac{V}{T} = \text{constante}
\]

C’est la loi de Gay-Lussac.
4 Passage de l'échelle Celsius à l'échelle absolue (Kelvin)

On peut retrouver la loi de Gay-Lussac à partir de la loi de la dilatation.

Considérons un gaz occupant le volume V_0 lorsqu'il se trouve à la température $T_0 = 273 K$. Son volume V à une nouvelle température T quelconque vaut:

$$V = V_0 \times \frac{T}{T_0}$$

En introduisant la valeur de V_0:

$$V = \frac{V_0 T}{T_0}$$

On obtient alors:

$$V = \frac{V_0 T}{T_0}$$

C'est-à-dire la loi de Gay-Lussac.

On mesure le volume de 4 échantillons de gaz à différentes températures.
On obtient de droites qui coupent l'axe des températures à la valeur $-273^\circ C$, c'est-à-dire $0 K$.

6 La loi de Charles

On considère un gaz enfermé dans un récipient indéformable à la pression p_0. On chauffe ce gaz à la température absolue T_2 et on mesure la nouvelle pression p_2.
On obtient que:

$$\frac{p_1}{p_2} = \frac{T_1}{T_2}$$

Lorsque l'on chauffe un gaz en augmentant son volume constant, sa pression et sa température absolue sont proportionnelles.

7 La loi de Boyle-Marliette

Un gaz étant comprimable, il est possible de modifier son volume. Si sa pression ne change pas, sa pression reste constante.

De l'air à la température ambiante est enfermé dans un tube de tête section.\Box

La hauteur de l'indice de mercure est déterminée par h_{mer} et la pression atmosphérique par p_{atm}. La pression volumique du mercure est notée p_{mer}.

L'indice est tourné de façon que l'indice de mercure se trouve au-dessous de la colonne d'air.
On mesure la hauteur h_1 de la colonne d'air, le volume d'air comprimé est:

$$V_1 = S \times h_1$$

La pression est:

$$p_1 = p_{\text{atm}} + p_{\text{mer}}$$

On mesure le tube; l'indice de mercure est alors au-dessous de la colonne d'air comprimé. On constate que celle-ci a une hauteur différente h_2.

Le nouveau volume d'air est:

$$V_2 = S \times h_2$$

La pression est:

$$p_2 = p_{\text{atm}} + p_{\text{mer}}$$

On constate, à partir de deux équations, que:

$$p_1 V_1 = p_2 V_2$$

Lorsqu'on comprime un gaz à température constante, sa pression et son volume sont inversément proportionnels.

$p \cdot V$ = constante

C'est le loi de Boyle-Mariotte. L'indice de la constante est le $N!$ car c'est le I ! Il s'agit d'une constante.
8 La loi des gaz parfaits

Les trois lois que nous avons étudiées sont réunies dans une loi plus générale. Celle-ci décrit la transformation d'un gaz de manie constante.

\[\frac{pV}{T} = \text{constante} \]

C'est la loi des gaz parfaits; l'unité de la constante est le [1·K⁻¹·L⁻¹·mol⁻¹].

Dans un gaz parfait, on néglige les collisions entre les molécules ainsi que leur volume. Il n'en est pas de même dans les gaz réels qui, en conséquence, ne suivent pas exactement la loi des gaz parfaits. Ils en approchent d'au
tant plus que leur pression est faible et leur température élevée.

Note historique
La relation de Boyle - Mariotte a été établie en 1662 par Robert Boyle (1627 - 1691) et de façon indépe

6 Une ampoule électrique émet une lumière intense sous une pression d'argon de 100000 kPa, avec une pression de la vapeur d'eau de 100 kPa.
Expliquez pourquoi.

7 Un gaz est emprisonné dans une ampoule dont l'étincelle est brûlée. On suspend une force sur le fil, et observe que le déplacement de cette force, la pression du gaz ne change pas, même si sa température augmente.
Pourquoi ?

8 Un pamplemousse est un fruit de protéine lourde et de protéine lourde.

9 Les bouteilles d'air comprimé destinées à la plongée sous-marine sont remplies au moyen d'un compresseur.
Le volume d'air à 1000 kPa (nom) est également comprimé à 300 bar :
Note : supposer que la température est la même dans les deux situations.

10 Leurs ampoules constituent une source d'énergie intermède.
Les ampoules sont successivement remplies de 100 kPa et de 1000 kPa (nom). Il y a une pression de 100 kPa dans l'ampoule de 1000 kPa (nom) :
Note : supposer que la température est la même dans les deux situations.

11 Un ballon météorologique a un diamètre de 3 m et un volume de 10 m³.
La pression de l'hydrogène qui le remplit est de 0.1 bar et sa température de 1°C.
Note : supposer que la température est la même dans les deux situations.

12 Contraires aux ballons à gaz industriels, un ballon météorologique est conçu pour avoir des enveloppes élastiques. Ce type de ballon est utilisé dans les expériences météorologiques pour essayer d'éviter les vents. A cette altitude, le ballon se développe et se gonfle lentement, sans se rompre ou se détacher.
Corrigé des exercices

Les gaz parfaits

Exercice 1

a) La pression atmosphérique diminue avec l'altitude. Le gaz va se dilater et se dilatent dans un ballon.

b) Le volume total du gaz dans le ballon augmenté de volume dans les mêmes proportions.

Les gaz parfaits

Exercice 2

\[p = \frac{p}{\text{s}} = \frac{p}{\text{m}} = \frac{p}{\text{l}} = 2 \times 10^{4} \text{ Pa} \times 10^{-9} \text{ m}^{2} = 0.2 \text{ N/m}^{2} \]

En fin de compte, en négligeant les facteurs de l'évolution de la température, il faudra pousser le piston avec une force d'environ 63 N/mm².

Les gaz parfaits

Exercice 3

Ce type de ballon explose car le volume ne cesse d'augmenter avec l'altitude. En effet, la pression diminue avec l'altitude, le gaz contenu dans le ballon augmente de volume dans les mêmes proportions (si la pression est divisée par 10, le volume du ballon sera multiplié par 10).

Les gaz parfaits

Exercice 4

Situation de départ : \(p_{1} = 0.96 \text{ bar} \), \(V_{1} = 20 \text{ ml} \), \(T_{1} = 18(\pm23) \text{ K} \)

Situation finale : \(p_{2} = 1.2 \text{ bar} \), \(V_{2} = \text{ cherché} \), \(T_{2} = 53(\pm23) \text{ K} \)

\[\frac{p_{1} V_{1}}{T_{1}} = \frac{p_{2} V_{2}}{T_{2}} \]

\[0.096 \times 20 = ? \times 1.2 \]

Le volume final de l'air expulsé vaut environ 54 ml.

Les gaz parfaits

Exercice 5

Situation de départ : \(p_{1} = 1 \text{ bar} \), \(V_{1} = 1 \text{ ml} \), \(T_{1} = 100 \text{ K} \)

Situation finale : \(p_{2} = 2 \text{ bar} \), \(V_{2} = \text{ cherché} \), \(T_{2} = 200 \text{ K} \)

\[\frac{p_{1} V_{1}}{T_{1}} = \frac{p_{2} V_{2}}{T_{2}} \]

\[1 \times 1 = ? \times 2 \]

Le volume ne change pas !

Les gaz parfaits

Exercice 11

a) Calculer la pression dans la marmite à vapeur:

\[p = \frac{3.5 \text{ N}}{\text{m}^{2}} \times \frac{600 \text{ N/m}^{2}}{\text{m}^{2}} = 0.49 \text{ N/m}^{2} \]

La pression maximale dans la marmite vaut donc environ 1.7 bar.

b) À cette pression, l'eau bout à environ 115 °C (voir «La vaporisation, la liquéfaction» dans le chapitre EFFETS DE LA CHALEUR).

Les gaz parfaits

Exercice 12

Pour éviter des calculs fastidieux, énumérons la dilatation d'un litre de gaz:

Situation de départ : \(p_{1} = 1 \text{ bar} \), \(V_{1} = 1 \text{ litre} \), \(T_{1} = (15+273) \text{ K} \)

Situation finale : \(p_{2} = 0.25 \text{ bar} \), \(V_{2} = \text{ cherché} \), \(T_{2} = (50+273) \text{ K} \)

\[\frac{p_{1} V_{1}}{T_{1}} = \frac{p_{2} V_{2}}{T_{2}} \]

\[1 \times 1 = ? \times 2.1 \]

Le volume augmenté d'un facteur \(2.1 \times 1.44 \text{ litre} \text{ ml} \)

Le diamètre du ballon à 10 km d'altitude vaut environ \(10 \text{ m} \times 0.5 \text{ mm}^{2} \text{ m}^{2} \)

Les gaz parfaits

Exercice 13

a) La boule monte car la masse volumique du gaz est plus faible que celle de l'eau.

b) La pression du gaz dans la boule diminue à mesure que le gaz s'évapore avec la pression quotidienne.

c) Sa température est plus faible à cause de la baisse de pression mais elle s'évapore plus rapidement avec l'eau environnante. Il est difficile de prévoir cette température.

d) Son volume augmente à mesure que la pression environnante diminue.

e) La force de friction entre le gaz et la surface est moindre que la force de friction entre l'eau et la surface.

Les gaz parfaits

Exercice 14

La pression dans l'eau augmentée de 0.1 bar vaut environ pour chaque mètre de profondeur:

Situation de départ : \(p_{1} = 0.45 \pm 0.05 \text{ bar} \), \(V_{1} = 30 \text{ mm}^{3} \), \(T_{1} = (7+273) \text{ K} \)

Situation finale : \(p_{2} = 0.95 \text{ bar} \), \(V_{2} = \text{ cherché} \), \(T_{2} = (22+273) \text{ K} \)

\[p_{1} V_{1} = p_{2} V_{2} \]

\[0.45 \times 30 = ? \times \text{ ml} \]

\[46,6 \text{ ml} \]

Dans les conditions de prática, la quantité de volume change de 47 mm³ quand elle atteint la surface.

Les gaz parfaits

Exercice 6

Environ 95% de l'énergie électrique est transformée en chaleur dans une ampoule. Quand elle fonctionne, sa température augmente considérablement. La pression à l'intérieur de l'ampoule est calculée pour qu'elle reste inférieure à la pression atmosphérique quand l'ampoule est allumée. Grâce à cette précision, en cas de rupture de chaudière, il n'y aura pas de projections dangereuses.

Les gaz parfaits

Exercice 7

Pour pouvoir appliquer la loi des gaz, il faut mesurer les pressions absolues. Dans le cas présent, on ne peut pas appliquer la loi des gaz parfaits sans tenir compte de la pression atmosphérique et de la pression de vapeur de la surface.

Les gaz parfaits

Exercice 8

Situation de départ : \(p_{1} = 300 \text{ bar} \), \(V_{1} = 8 \text{ litres} \), \(T_{1} = (10+273) \text{ K} \)

Situation finale : \(p_{2} = 0.96 \text{ bar} \), \(V_{2} = \text{ cherché} \), \(T_{2} = (35+273) \text{ K} \)

\[p_{1} V_{1} = p_{2} V_{2} \]

\[300 \times 8 = ? \times \text{ ml} \]

\[98 K \times 0.96 \text{ bar} \]

Le volume d'air respirable vaut 2 \text{ litres}.

Automatisme du pompe : 2 \text{ litres} \times 45 \text{ litres/minute} = 90 \text{ litres/minute}.

Le pompe peut aspirer environ 1 heure dans ces conditions.

Les gaz parfaits

Exercice 9

Situation de départ : \(p_{1} = 0.95 \text{ bar} \), \(V_{1} = \text{ cherché} \), \(T_{1} = T_{2} \)

Situation finale : \(p_{2} = 200 \text{ bar} \), \(V_{2} = 15 \text{ litres} \), \(T_{2} = T_{1} \)

\[p_{1} V_{1} = p_{2} V_{2} \]

\[0.95 \times 15 = ? \times \text{ ml} \]

\[3 \text{ litres} \times 150 \text{ litres/minute} = 450 \text{ litres/minute} \]

Le volume d'air aspiré vaut environ 2 \text{ litres}.

Les gaz parfaits

Exercice 10

Situation de départ : \(p_{1} = 300 \text{ bar} \), \(V_{1} = V_{2} = \text{ cherché} \), \(T_{1} = (60+273) \text{ K} \)

Situation finale : \(p_{2} = \text{ cherché} \), \(V_{1} = 3 \text{ litres} \), \(T_{2} = (250+273) \text{ K} \)

\[p_{1} V_{1} = p_{2} V_{2} \]

\[310 \times V_{2} = ? \times \text{ ml} \]

\[98 K \times \text{ bar} \]

La pression de l'hydrogène peut atteindre 535 bars (si la substance n'est pas part). 290.

Chapitre 39. La fusion, la solidification

En février, il gèle souvent : il neige et de la glace se forme. Au printemps, c'est le dégel et la fonte des neiges. En été, il faut fabriquer de la glace dans les congélateurs. Celui et dégel sont des phénomènes naturels, banals dans nos régions tempérées.

1. La fusion de la glace

Un tube contenant la glace et un thermomètre est placé dans l'eau froide. On observe régulièrement la température de la glace et le temps qu'il écoulé depuis le début de l'expérience. Un observateur obtient ainsi l'image du contenu du tube.

a) Quel est le temps nécessaire pour fondre de l'eau à 0°C sous pression atmosphérique ?

b) Quelle est la température de fusion de l'eau ?

2. La fusion d'autres substances : la température de fusion

Comme la glace, toutes substances purifiées à une température qui lui est propre. Cette température est la température de fusion, notée Tf. La température de fusion de l'eau à pression normale d'est de 0°C, au-delà de 100°C, la pression d'ébullition de l'eau est de 1013 kPa, défini de l'échelle Celsius.
3 Deux effets de l'énergie thermique

Dans notre exemple, le glaçon dans l'épargne serait égale à l'énergie thermique (la chaleur) qu'il reçoit de l'air ambiant.

Un effet d'énergie thermique peut avoir deux effets sur un corps :
— une dilatation de la température ;
— un changement, à température constante, de son état physique.

Les particules en mouvement d'un solide sont soumises à des forces coïncidantes dans un espace bien défini. Un apport d'énergie thermique augmente l'amplitude du mouvement des particules et la température du solide augmente. À partir de la température de fusion, les particules peuvent glisser les unes sur les autres car les forces qui les liaient à leur place sont diminuées. L'onde caractéristique de la structure solide disparaît. L'énergie fournie sera égale à l'énergie solidaire.

4 Masse et volume

On place des glaçons dans une éprouvette contenant du nitrure ; on note le poids du système. En négligeant la chaleur solidaire, on peut écrire :

\[m = \text{volume du glaçon} \times 0.92 \times 10^3 \text{kg/m}^3 \]

Volume de l'air : 100 cm³
Volume du glaçon : 100 cm³

6 Le palier de fusion

On chauffe un glaçon. Le graphique représente les températures mesurées dans le glaçon, en fonction du temps. Le palier de fusion se compose de deux étapes distinctes.

a) La température du glaçon augmente de sa valeur initiale \(T_0 \) jusqu'à la température de fusion \(T_f \).

\[E_{fus} = \text{masse du glaçon} \times (T_f - T_0) \]

b) La température du glaçon se transforme en eau, et l'énergie nécessaire à la fusion est :

\[E_{fus} = m \times L \]

Ce palier est une caractéristique de la fusion de n'importe quelle substance.

c) La température de l'eau augmente de \(T_f \) jusqu'à sa valeur finale \(T_{fin} \).

L'énergie reçue par l'eau est :

\[E_{fin} = m \times (T_{fin} - T_f) \]

7 La solidification de l'eau

Un thermostate est plongé dans un tube contenant de l'eau. On place l'éprouvette dans un mélange réfrigérant. On relève régulièrement la température en observant l'augmentation du volume du tube.

La température du glaçon solidaire de l'eau est :

\[T = \text{température de l'eau} \times 0.92 \times 10^3 \text{kg/m}^3 \]

1 On fait fondre du glaçon dans une cassette plastique sur une plaque électrique chaude. Mais il est difficile de passer de l'eau de fusion en solution de la glace. Quel est le problème ?

2 Vrai ou faux ?

L'eau n'est pas plus dense que le glaçon froid. L'eau est moins dense que le glaçon chaud. L'eau est plus dense que le glaçon froid. L'eau est moins dense que le glaçon chaud.

3 On note l'expérience de la figure ci-dessous. Quel est le trouble de la glace solidaire ?

4 On fait fondre un mélange de deux substances. Il existe encore un liquide solidaire après avoir ajouté de la glace. Deux substances sont solides.

5 Faire un test consiste à mettre de la glace solidaire dans un mélange d'eau.

6 Le liquide se refroidit de l'extérieur de l'eau de fusion d'une quantité égale à l'énergie solidaire.

La chaleur latente de fusion de l'eau est :

\[L = 80 \text{kJ/kg} \]

8 Le palier de fusion est un palier de transformation.
Corrigé des exercices

La fusion, la solidification

Exercice 1

Le passage de l'état solide à l'état liquide se fait à température constante (vocéline de 0°C). L'eau qui est en exces ne gèle pas. Les individus n'ont pas besoin de l'eau qui fonde pour obtenir de la glace.

La fusion, la solidification

Exercice 2

- La glace est de l'eau solidifiée.
- Pour faire fondre la glace, il faut effectivement la faire parvenir à 0°C ou y ajouter de l'énergie de fusion.
- Les changements d'état des substances se font à température constante.
- La température de fusion de l'eau vaut effectivement 0°C.
- La formation de glace s'accompagne d'une importante augmentation de volume (environ 10%).
- La fusion est un changement d'état qui ne change pas la nature des substances, dans ce sens il est physique.

La fusion, la solidification

Exercice 3

On montre que c'est le cas si le thermomètre est juste sous la température de la glace en train de fondre vaut par définition 0°C.

La fusion, la solidification

Exercice 4

L'alcool et le mercure sont liquides en dessous de 0°C. Ils sont utilisés dans des thermomètres.

La fusion, la solidification

Exercice 5

On peut utiliser sans risque un thermomètre à mercure dans des conditions de basse température. Il faut simplement savoir que le mercure se solidifie à -39°C et qu'en dessous de cette température, il ne fonctionne plus. Le 22° et le mercure n'ont pas un comportement idéal.

La fusion, la solidification

Exercice 6

Si l'eau gèle dans le circuit de refroidissement, cela-ci sera absorbé par la distillation due au gel de l'eau.

La fusion, la solidification

Exercice 7

Il n'y a pas de corrigé pour cet exercice.

La fusion, la solidification

Exercice 8

La fusion des matières forment un mélange de plusieurs substances qui ont chacune un point de fusion différent. Il est donc plus complexe que la fusion d'une substance pure.

Le boue solide de l'eau et plusieurs types de graisses qui ne fondent pas toutes à la même température. Pour cette raison, le boue peut être plus ou moins mou (fusion progressive) avant de devenir liquide.

La fusion, la solidification

Exercice 9

Exercice 10

Il faut de l'énergie pour élever la température des glaçons jusqu'à leur point de fusion, pour fondre les glaçons et enfin pour élever la température de l'eau de 0°C jusqu'à 2°C.

La fusion, la solidification

Exercice 11

L'énergie nécessaire pour fondre 1 kg de glace (faisant fondre des cristaux de glace de 0°C pour obtenir de l'eau liquide de 0°C) est équivalente à l'énergie nécessaire pour élever la température de 1 kg d'eau liquide de 80°C.

La fusion, la solidification

Exercice 12

- Compte tenu des incertitudes, la chaleur latente de fusion de la glace varie (335 000 ± 30 000) J/kg.
Exercice 13

a) $Q = \eta \cdot L_a = \rho \cdot V \cdot L_a = \rho \cdot V \cdot L_a \cdot \frac{h_{l-v}}{h_{l-v}} = 1.2 \cdot 10^3 \cdot 6.1 \cdot 10^{-3} \cdot 10^{15} = 7.32 \cdot 10^{13}$ J.

b) Énergie reçue du soleil sur 1 mètre carré $= \eta$ énergie reçue pour 1 mètre carré de glace:

- En nombre de jours d'éclaircie (Q_a énergie reçue du soleil par jour et par mètre carré)

$$ Q_a = \frac{L_a}{h_{l-v}} = \frac{1.2 \cdot 10^3 \cdot 10^{15}}{1.2 \cdot 10^3} = 10^{15}$$

Il faudra au moins 15 jours pour fondre 10 cm de glace à la surface du lac.

Exercice 14

L'énergie pour foncer la glace équivaut à celle qui est nécessaire pour chauffer l'eau de fondre de 80°C. Il ne va donc rester de la glace.

Dans ce cas, l'énergie cédée par l'eau chaude qui se refroidit va réchauffer la glace jusqu'à 0°C (T_0), puis faire fondre une partie de la glace:

$$V_{l-v} = \frac{\Delta H}{\Delta T} = \frac{1}{10^3}$$

$$m = \frac{V_{l-v}}{h_{l-v}} = \frac{10^3}{1.2 \cdot 10^3} = 0.833$$

125 grammes de glace va fondre, il restera 25 grammes de glace non fondue.

Exercice 15

La pression absolue est la pression de fusion.

Applications:
- Les formes des patins à glace font fondre la glace par pression. La patin glisse sur une mince pellicule d'eau qui gèle à nouveau après le passage du patin.
- La glace fond sous la pression des pieds de l'homme qui peuvent ainsi prendre appui sur le gazon à travers la couche de glace si elle n'est pas trop épaisse. Cela est efficace sur le verglas par exemple.

Extrait de la page 297 du livre "La température d'ébullition; évaporation et sublimation" de Louis Pasteur (1884).
18 Les réfrigérateurs

Les réfrigérateurs utilisent les phénomènes de liquéfaction et de vaporisation d'un liquide, le frigo.

Le cycle d'un réfrigérateur (principe du chaleur) comprend quatre éléments principaux :

- L'évaporateur
- Le compresseur
- La condenseur
- Le détendeur

Des échanges d'énergie avec le milieu ambiant sont liés dans l'évaporateur et dans le condenseur.

19 Les pompes de chaleur

Une pompe de chaleur (PCH) permet de soustraire de l'énergie. Elle permet de passer d'un refroidisseur à une source chaude, par exemple, d'un liquide à une source de chaleur.

Les transferts d'énergie se font au moyen d'un liquide qui se vaporise à basse température. Une PCH de type airel a ceci d'intérêt :

- L'évaporateur, où le liquide se vaporise à basse température et absorbe de l'énergie au processus.
- Le compresseur, qui comprime le liquide.
- Le condenseur, où le liquide se condense et libère de l'énergie qui chauffe le milieu ambiant.
- Le détendeur, qui transforme le chaleur en énergie électrique.

En sortie, une PCH peut soustraire de l'énergie de l'air à une température de 30 °C pour fournir une énergie électrique de 800 W DPL.

Cela est réalisable par le biais d'une solution comportant une source chaude et un refroidisseur à basse température.
Corrigé des exercices

La vaporisation, la liquéfaction

- Exercice 1
Le passage de l'eau à l'état gazeux nécessite un temps de condensation sous une pression donnée. La pression d'ébullition de l'eau atteint 100 °C, c'est-à-dire que sous une pression de 1 atm, l'eau ne peut pas être portée à plus de 100 °C.

La vaporisation, la liquéfaction

- Exercice 2
La température d'ébullition de l'eau est de 100 °C, même si sa densité est plus élevée. La présence d'une couche d'eau amène une chute de température à cause des projections d'eau provoquées par les mouvements liés à l'ébullition de l'eau.

La vaporisation, la liquéfaction

- Exercice 3
Le passage de l'eau à l'état gazeux nécessite une quantité importante d'énergie qui est prise sous forme de chaleur dans l'environnement immédiat. Dans le cas présent, c'est la phase qui cède de la chaleur et se refroidit.

La vaporisation, la liquéfaction

- Exercice 4
Les facteurs suivants accélèrent l'évaporation de l'eau:

- La surface d'échange (très importante).
- Le mouvement de l'air qui est en contact avec l'eau. Cela a un effet comparable à une augmentation de la surface d'échange.
- La soufflerie de l'air: dans le cas d'un vent, ce qui peut augmenter la température.

La vaporisation, la liquéfaction

- Exercice 5
Les phénomènes d'évaporation sont effectués dans les écoulements. La pression d'eau les phases est importante, elle se mesure en litres par jour.

La vaporisation, la liquéfaction

- Exercice 6
La température d'ébullition de l'eau est de 100 °C, même si sa densité est plus élevée. La présence d'une couche d'eau amène une chute de température à cause des projections d'eau provoquées par les mouvements liés à l'ébullition de l'eau.

La vaporisation, la liquéfaction

- Exercice 7
Le passage de l'eau à l'état gazeux nécessite une quantité importante d'énergie qui est prise sous forme de chaleur dans l'environnement immédiat. Dans le cas présent, c'est la phase qui cède de la chaleur et se refroidit.

La vaporisation, la liquéfaction

- Exercice 8
Les facteurs suivants accélèrent l'évaporation de l'eau:

- La surface d'échange (très importante).
- Le mouvement de l'air qui est en contact avec l'eau. Cela a un effet comparable à une augmentation de la surface d'échange.
- La soufflerie de l'air: dans le cas d'un vent, ce qui peut augmenter la température.

La vaporisation, la liquéfaction

- Exercice 9
Les phénomènes d'évaporation sont effectués dans les écoulements. La pression d'eau les phases est importante, elle se mesure en litres par jour.

La vaporisation, la liquéfaction

- Exercice 10
La température d'ébullition de l'eau est de 100 °C, même si sa densité est plus élevée. La présence d'une couche d'eau amène une chute de température à cause des projections d'eau provoquées par les mouvements liés à l'ébullition de l'eau.

La vaporisation, la liquéfaction

- Exercice 11
Les facteurs suivants accélèrent l'évaporation de l'eau:

- La surface d'échange (très importante).
- Le mouvement de l'air qui est en contact avec l'eau. Cela a un effet comparable à une augmentation de la surface d'échange.
- La soufflerie de l'air: dans le cas d'un vent, ce qui peut augmenter la température.

La vaporisation, la liquéfaction

- Exercice 12
Les phénomènes d'évaporation sont effectués dans les écoulements. La pression d'eau les phases est importante, elle se mesure en litres par jour.

La vaporisation, la liquéfaction

- Exercice 13
La température d'ébullition de l'eau est de 100 °C, même si sa densité est plus élevée. La présence d'une couche d'eau amène une chute de température à cause des projections d'eau provoquées par les mouvements liés à l'ébullition de l'eau.

La vaporisation, la liquéfaction

- Exercice 14
La température d'ébullition de l'eau est de 100 °C, même si sa densité est plus élevée. La présence d'une couche d'eau amène une chute de température à cause des projections d'eau provoquées par les mouvements liés à l'ébullition de l'eau.

La vaporisation, la liquéfaction

- Exercice 15
La température d'ébullition de l'eau est de 100 °C, même si sa densité est plus élevée. La présence d'une couche d'eau amène une chute de température à cause des projections d'eau provoquées par les mouvements liés à l'ébullition de l'eau.
62 grammes d'eau s'évaporent en 470 secondes :

\[
P_e \times \frac{E_{\text{vapeur liquide}}} {E_{\text{vapeur liquide}}} = E_{\text{vapeur liquide}}
\]

\[
e_{\text{vapeur liquide}} = \frac{E_{\text{vapeur liquide}}}{P_e} = \frac{310 \cdot 470}{0.002 \times 2.35 \times 10^5} J/kg
\]

La chaleur latente de vaporisation monoxène vaut environ 2.35 \times 10^5 J/kg.

Il pourrait s'agir d'eau mais la chaleur musclée parait élevée. Peut-être l'eau contient-elle une substance dissoute qui augmente sa chaleur musclée.

Exercice 16

La vaporisation d'un liquide nécessite une quantité importante d'énergie qui est prise sous forme de chaleur dans l'environnement immédiat.

Exercice 17

Il n'y a pas de corrigé pour cet exercice.

Exercice 18

a) Le compresseur crée par pompage une importante différence de pression entre le condenseur et l'évaporateur. Cette différence est maintenue par le détendeur qui est en fait un étranglement qui freine le passage du liquide.

b) Dans l'évaporateur, la pression est basse ; le liquide se vaporise en prenant de la chaleur dans son environnement immédiat. L'évaporateur est donc très froid.

c) Dans le condenseur, la pression est élevée, le liquide se condense en libérant de la chaleur dans son environnement immédiat. Le condenseur est très chaud, il est peint en noir pour mieux augmenter son énergie.

d) L'évaporateur est dans l'armoire frigorifique, vers le haut de l'espace réfrigéré. Le condenseur est à l'extérieur de l'armoire frigorifique, généralement derrière celle-ci (voir la photo sur la page du livre).

Exercice 19

a) La conservation de l'énergie implique que l'énergie fournie au compresseur par l'évaporateur soit égale à l'énergie libérée par le condenseur, soit 28 600 kWh.

\[
E_{\text{compresseur}} = E_{\text{condenseur}} = 28 600 kWh
\]

\[
E_{\text{compresseur}} = \frac{E_{\text{compresseur}}}{E_{\text{condenseur}}} \times 38 600 kWh = 4.41
\]

Le coefficient de performance de cette pompe à chaleur (PAC) vaut environ 4.4.

NB: Par abus de langage, on utilise parfois le terme «rendement» pour cette grandeur. Cependant, par définition, un rendement ne peut pas être supérieur à 1 parce qu'il concerne un système fermé où l'énergie est conservée.