Problème 1 (poids 2)

Première partie

On considère la fonction $f: x \mapsto y = 2\cos(x)$.

- a) Sans faire l'étude de la fonction, dessiner soigneusement son graphe pour $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.
- b) Calculer les coordonnées du point T du graphe, où la pente de la tangente vaut 2.
- c) Déterminer l'équation de cette tangente.
- d) Dessiner la tangente dans le même repère que le graphe de f.
- e) On considère la surface fermée délimitée par le graphe de f, sa tangente et l'axe des ordonnées. Hachurer cette surface et calculer son aire.

Deuxième partie (indépendante de la première)

On considère la fonction $f: x \mapsto y = \frac{-ax^2 - ax + a}{x + a}$, où a est un nombre réel non nul $(a \in \mathbb{R}^*)$.

- a) Déterminer les coordonnées des points d'intersection du graphe de f et des axes de référence.
- b) Déterminer la valeur de *a* telle qu'un point à tangente horizontale du graphe de *f* se trouve sur l'axe des ordonnées.

Pour la suite du problème, on choisit a = 2, donc $f(x) = \frac{-2x^2 - 2x + 2}{x + 2}$.

- Étudier la fonction f, pour le graphe prendre une unité égale à deux carreaux.
- d) On appelle H_1 et H_2 les deux points à tangente horizontale du graphe de f. Déterminer l'angle aigu formé par la droite passant par H_1 et H_2 et l'asymptote oblique du graphe.
- e) Déterminer une primitive de la fonction f.

LYCÉE DENIS-DE-ROUGEMONT

EXAMEN DE MATURITÉ

Neuchâtel et Fleurier

Mathématiques de niveau 1 Session 2007

Problème 2 (poids 2)

Remarque: Pour tous les dessins de ce problème, utiliser la feuille annexée (page 4).

Dans l'espace muni d'un repère orthonormé, on donne les points A(8;1;2), B(4;9;10), C(0;11;6) et D(4;3;-2).

- a) Prouver que le quadrilatère ABCD est un rectangle.
- b) Dessiner les points A, B, C et D puis déterminer par construction ou par calcul le point d'intersection E de la droite AD et du sol ainsi que le point d'intersection F de la droite CD et du sol.
- c) Hachurer la partie visible du rectangle.
- d) Établir une équation cartésienne du plan π contenant le rectangle.
- e) Dessiner les traces du plan π .
- f) Calculer la valeur de l'angle aigu déterminé par le plan π et le sol.
- g) Calculer le volume de la pyramide de sommet O(0;0;0) et de base ABCD.
- h) Déterminer le centre et le rayon du cercle c circonscrit au rectangle ABCD.
- i) La droite t est incluse dans le plan π et tangente au cercle c en A. Déterminer une représentation paramétrique de cette droite.
- j) Déterminer une équation cartésienne de la sphère s qui contient le cercle c et dont le centre est dans le mur.

LYCÉE DENIS-DE-ROUGEMONT

EXAMEN DE MATURITÉ

Neuchâtel et Fleurier

Mathématiques de niveau 1 Session 2007

Problème 3 (poids 1)

Marie et Jeremy aiment lancer les dés. Marie dispose d'un dé parfaitement équilibré, alors que Jeremy a fabriqué un dé pipé avec lequel la probabilité d'obtenir un "6" est égale à $\frac{3}{4}$, les autres issues étant équiprobables.

- a) Jeremy lance trois fois son dé. Quelle est la probabilité qu'il n'obtienne jamais le "6"?
- b) Jeremy lance quatre fois son dé. Quelle est la probabilité qu'il obtienne deux fois le "6" ?
- c) Combien de fois, au minimum, Jeremy doit-il lancer son dé, s'il veut que la probabilité d'obtenir au moins une fois le "6" dépasse 0,999?
- d) Marie et Jeremy lancent leur dé à tour de rôle, le jeu s'arrêtant dès qu'un des joueurs obtient le "6". Quelle est la probabilité qu'à la fin du jeu le nombre total de lancers soit supérieur à quatre ?
- e) Marie et Jeremy lancent leur dé une fois. Quelle est la probabilité que les deux joueurs obtiennent le même nombre de points ?
- f) La réponse à la question précédente change-t-elle si le dé de Jeremy est pipé différemment ? Justifiez votre réponse par un calcul ou un raisonnement.
- g) Marie et Jeremy lancent leur dé une fois. Quelle est la probabilité qu'un seul joueur obtienne le "6"?
- h) Marie et Jeremy ont lancé leur dé une fois. On sait qu'un seul joueur a obtenu le "6". Quelle est la probabilité que ce soit Jeremy?