Mathématiques niveau I

Problème 1 (poids 2)

On considère la fonction f définie par $f(x) = \frac{\ln(x)}{x}$.

a) Etudier la fonction f: domaine de définition, éventuelles intersections du graphe avec les axes, tableau des signes et asymptotes.

Montrer que la dérivée de f peut s'écrire $f'(x) = \frac{1 - \ln(x)}{r^2}$.

Calculer les coordonnées du point à tangente horizontale puis montrer qu'il s'agit d'un maximum.

Dessiner le graphe de f en prenant 4 carreaux comme unité, et en allant jusqu'à x=8 au moins.

- b) Déterminer l'équation de la tangente au graphe de f au point d'abscisse $x=e^2$.
- c) Sous quel angle le graphe de f coupe-t-il l'axe Ox.
- d) Montrer que la fonction F donnée par $F(x) = \frac{1}{2} \ln^2(x)$ est une primitive de la fonction f.
- e) Sur le dessin, hachurer la surface fermée délimitée par l'axe Ox, le graphe de f ainsi que les droites $x=\frac{1}{e}$ et $x=e^2$.

Calculer l'aire de cette surface.

f) Trouver la plus petite valeur entière de α , avec $\alpha > 1$, pour laquelle $\int_1^{\alpha} f(x) dx > \frac{9}{2}$.

On considère maintenant la fonction g définie par $g(x) = x \cdot \ln(x)$.

- g) En intégrant par parties, trouver une primitive de la fonction g.
- h) Calculer $\int_1^e g(x) dx$.

On considère finalement la fonction h définie par $h(x) = \frac{\ln(x)}{x} + x^k$ avec $k \in \mathbb{R}$.

i) Déterminer la valeur de k pour laquelle le graphe de la fonction h passe par le point de coordonnées $(e; \frac{3}{e})$.

Mathématiques niveau I

Problème 2 (poids 2)

Pour les dessins de ce problème, utiliser la feuille annexée. Dessiner les parties invisibles en traitillé.

On considère les points A(-2; 3; 10), B(-1; -2; 5), et D(3; -1; 0).

- a) Déterminer des équations paramétriques de la droite d qui passe par les points A et B.
- b) Trouver l'équation cartésienne du plan α contenant les points A, B et D.
- c) Dessiner les traces du plan α .
- d) Dessiner la droite horizontale h passant par le point H(0;0;5) et contenue dans le plan α , ainsi que sa projection dans le sol.

On considère encore le plan β : 16x - 12y - 15z - 105 = 0, la droite e: $\begin{cases} x = 2 + 3\mu \\ y = -1 - \mu \\ z = 4 + 4\mu \end{cases}$ ainsi que la sphère \mathcal{S} centrée en C(-7; 9; 20) et de rayon 25.

- e) Calculer l'angle aigu formé par le plan β et le plan $\gamma: 7x+5y+10z-47=0$.
- f) Donner l'équation de la sphère \mathcal{S} .
- g) Trouver les éventuels points d'intersection de la droite e et du plan β . Déterminer la position relative de la droite e et du plan β .
- h) Montrer que le plan β est tangent à la sphère \mathcal{S} et déterminer les coordonnées du point de tangence.

Mathématiques niveau I

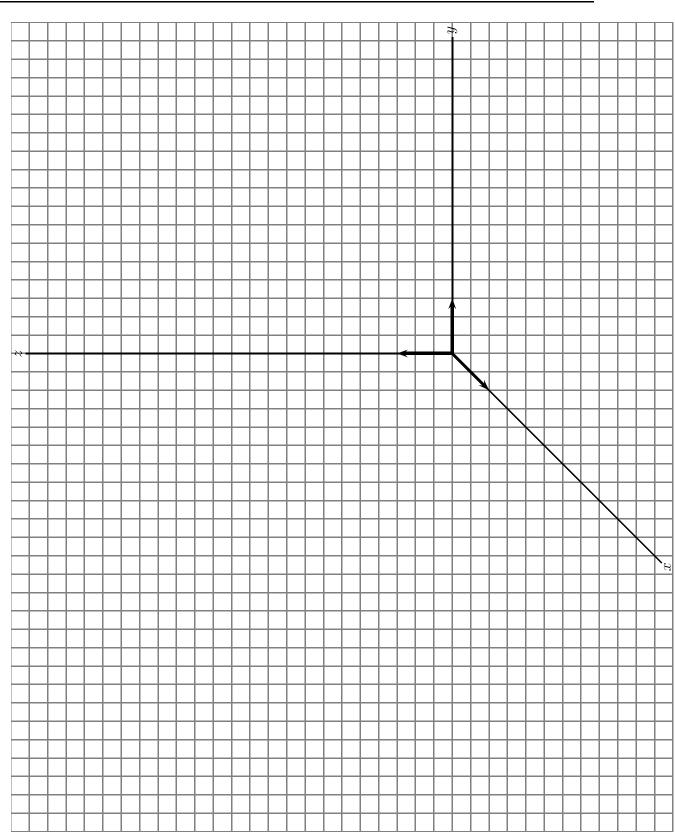
Problème 3 (poids 1)

Première partie

James possède trois déodorants aux senteurs suivantes : lavande, citron et muguet, ainsi que quatre parfums aux senteurs suivantes : lavande, citron, jasmin et cannelle.

Chaque matin, à son réveil, James choisit au hasard un déodorant qu'il s'applique puis il fait de même avec un parfum. On dira que James est « mono-senteur » si le déodorant et le parfum ont la même senteur.

- a) Montrer que la probabilité que James soit « mono-senteur » vaut $\frac{1}{6}$.
- b) Lors de la semaine à venir (7 jours), calculer les probabilités suivantes :
 - 1) qu'il soit exactement trois fois « mono-senteur »;
 - 2) qu'il soit au moins deux fois « mono-senteur »;
 - 3) qu'il soit au plus une fois « mono-senteur ».
- c) Combien de jours au minimum James doit-il se parfumer pour que la probabilité qu'il soit au moins une fois « mono-senteur » soit supérieure à 95%?
- d) Aujourd'hui, James n'est pas « mono-senteur ». Quelle est la probabilité que son déodorant sente le citron?


Le jour de son anniversaire, James est distrait : il s'applique un déodorant et un parfum (toujours choisis au hasard), mais il oublie de ranger le déodorant à sa place. Le lendemain, il lui reste donc le choix entre deux déodorants et quatre parfums.

e) Quelle est la probabilité qu'il soit « mono-senteur » le lendemain de son anniversaire?

Deuxième partie

- f) Combien de « mots » de trois lettres distinctes peut-on former avec les lettres CANEL?
- g) Combien de « mots » contenant deux L adjacents peut-on former en utilisant exactement une fois chaque lettre du mot CANNELLE?

$Math\'ematiques\ niveau\ I$

Classe: ..

Nom et prénom :

Annexe pour le problème 2